1.4 Tools and Technology

Unit 1: The Science of Life

Student Objectives

- 1. List the function of each of the major parts of a compound light microscope.
- 2. Compare two kinds of electron microscopes.
- 3. Describe the importance of having the SI system of measurement.
- 4. State some examples of good laboratory practice.

Microscopes as Tools

Introduction video

- Tools are objects to improve the performance of a task.
- Microscopes are tools that extend human vision by making enlarged images of objects. They are used to study organisms, cells, cell parts, and molecules.

Light Microscope

- A **compound microscope** shines light through a specimen and has two lenses to magnify an image.
- The specimen must be thin enough for light to pass through it.

Parts of Microscope

- 1. The **Eyepiece** (ocular lens) magnifies the image usually 10 times.
- 2. The **Objective lens** is located right above the specimen. Light passes through the specimen and then through the objective lens.
- 3. The **Stage** is a platform that supports a slide holding the specimen.
- 4. The **Light Source** is a light bulb that provides light for viewing the image.

Magnification and Resolution

- Magnification is the increase of an object's apparent size.
 - Ocular lens (10X)
 - Objective lens (up to 100X)
- **Resolution** is the power to show details clearly in an image.

Electron Microscope

- In an **Electron Microscope**, a beam of electrons produces an enlarged image of the specimen.
 - 1. Scanning Electron Microscope
 - 2. Transmission Electron Microscope
- Images are in black and white, but computers can artificially color the images.
- Specimen is places in vacuum chamber, so living specimens cannot be viewed in Electron microscope.

SEM: Scanning Electron Microscope

- The **SEM** passes a beam of electrons over the specimen's surface.
- SEMs provide a three-dimensional image of the specimen's surface.
- The specimen is sprayed with a fine metal coating and a beam of electrons is aimed at it.
- SEMs can magnify up to 100,000 times.

TEM: Transmission Electron Microscope

- The **TEM** transmits a beam of electrons through a very thin slices specimen.
- Magnetic lenses enlarge the image and focus it on a screen.
- The TEM is great to view an internal structure.
- TEM can magnify objects up to 200,000 times.

TABLE I-I SI Dase Units				
Base quantity	Name	Abbreviation		
Length	meter	m		
Mass	kilogram	kg		
Time	second	S		
Electric current	ampere	Α		
Thermodynamic temperature	kelvin	К		
Amount of substance	mole	mol		
Luminous (light) intensity	candela	cd		

TABLE 1.1 SI Raco Unite

TABLE 1-2 Some SI prefixes			
Prefix	Abbreviation	Abbreviation Factor of base unit	
giga	G	1,000,000,000 (109)	
mega	М	1,000,000 (106)	
kilo	k	1,000 (103)	
hecto	h	100 (102)	
deka	da	10 (10 ¹)	
base unit		1	
deci	d	0.1 (10 ⁻¹)	
centi	c	0.01 (10 ⁻²)	
milli	m	0.001 (10-3)	
micro	μ	0.000001 (10 ⁻⁶)	
nano	n	0.000000001 (10-9)	
pico	р	0.00000000001 (10 ⁻¹²)	

Units of Measurement

- Scientists use a common measurement system so that they can compare their results.
- The **Metric System** is a single, standard system of measurement.
- System International d'Unites (SI) is the International System of Units.
- Biologists use SI while making measurements in the laboratory.

TABLE 1-3 Some Derived and Other Units			
Quantity	Name	Abbreviation	
Area	square meter	m²	
Volume	cubic meter	m ³	
Density	kilogram per cubic meter	kg/m ³	
Specific volume	cubic meter per kilogram	m³/kg	
Celsius temperature	degree Celsius	°C	
Time	minute	1 min = 60 s	
Time	hour	1 h = 60 min	
Time	day	1 d = 24 h	
Volume	liter	$1 L = 1,000 cm^3$	
Mass	kilogram metric ton	1,000 g = 1 kg 1 t = 1,000 kg	

Base and Other Units

- The 7 Base Units describe length, mass, time, and other quantities.
- Derived units are produced by mathematical relationship between two base units or between derived units.
- Additional units of measurements can be used with SI units, such as units of time, volume, and mass.

Safety

- Hazards vary between the lab and the field:
- Chemical
- Physical
- Radiological
- Biological

Good Laboratory Practice

- Good laboratory practice arises from establishing safe, common-sense habits.
- Never work alone in the lab or without proper supervision.
- Always ask a supervisor before using any equipment.

Review Questions

- 1. List the four major parts of a compound microscope.
- 2. What is the difference between the magnification and resolution of an image under a microscope?
- 3. Compare the function of a transmission electron microscope with that of a scanning electron microscope.
- 4. What is the importance of using a common SI system of measurements?
- 5. How could you convert kilometers to millimeters?
- 6. Draw the safety symbol for 'Hand Safety'.