1.4 Tools and Technology

Chapter 1: The Science of Life

Student Objectives

- 1. List the function of each of the major parts of a compound light microscope.
- 2. Compare two kinds of electron microscopes.
- 3. Describe the importance of having the SI system of measurement.
- 4. State some examples of good laboratory practice.

Microscopes as Tools

- Tools are objects to improve the performance of a task.
- Microscopes are tools that extend human

_____. They are used to study

Light Microscope

 A compound microscope shines ______ through a ______ and has two lenses to

• The specimen must be thin enough for ______ to pass through it.

Parts of Microscope

1.The Eyepiece (_____) _____usually _____times.

- 2.The ______ is located right ______ the specimen. Light passes through the specimen and then through the objective lens.
- 3.The **Stage** is a _____ that supports a

4.The Light Source is a _____that provides light for

Magnification and Resolution

- Magnification is the
 - Ocular lens (10X)
 - Objective lens (up to 100X)
- Resolution is the _

Electron Microscope

- In an Electron Microscope, a beam of produces an of the specimen.
 - 1.

 2.
- Images are in black and white, but computers can artificially color the images.
- Specimen is places in vacuum chamber, so living specimens cannot be viewed in Electron microscope.

SEM: Scanning Electron Microscope

- The **SEM** passes a beam of electrons over the specimen's surface.
- SEMs provide a

_____of the specimens surface.

- The specimen is sprayed with a fine _____and a _____is aimed at it.
- SEMs can magnify up to _____

TEM: Transmission Electron Microscope

• The **TEM** _____

- _____enlarge the image and focus it on a screen.
- The TEM is great to view an internal structure.
- TEM can magnify

TABLE I-I SI Base onits				
Base quantity	Name	Abbreviation		
Length	meter	m		
Mass	kilogram	kg		
Time	second	S		
Electric current	ampere	Α		
Thermodynamic temperature	kelvin	К		
Amount of substance	mole	mol		
Luminous (light) intensity	candela	cd		

TARIE 1.1 SI Rase Units

TABLE 1-2 Some SI prefixes			
Prefix	Abbreviation	Abbreviation Factor of base unit	
giga	G	1,000,000,000 (109)	
mega	М	1,000,000 (106)	
kilo	k	1,000 (103)	
hecto	h	100 (10 ²)	
deka	da	10 (10 ¹)	
base unit	1	1	
deci	d	0.1 (10 ⁻¹)	
centi	с	0.01 (10 ⁻²)	
milli	m	0.001 (10-3)	
micro	Ч	0.000001 (10-6)	
nano	n	0.000000001 (10-9)	
pico	р	0.00000000001 (10-12)	

Units of Measurement

Scientists use a _______so that they can compare their results.

The Metric System is ______.

- System International d'Unites (SI) is the ______.
- Biologists use SI while making measurements in the laboratory.

TABLE 1-3 Some Derived and Other Units			
Quantity	Name	Abbreviation	
Area	square meter	m²	
Volume	cubic meter	m ³	
Density	kilogram per cubic meter	kg/m ³	
Specific volume	cubic meter per kilogram	m³/kg	
Celsius temperature	degree Celsius	°C	
Time	minute	1 min = 60 s	
Time	hour	1 h = 60 min	
Time	day	1 d = 24 h	
Volume	liter	$1 L = 1.000 \text{ cm}^3$	

kilogram metric ton

Mass

1,000 g = 1 kg

1 t = 1,000 kg

Base and Other Units

- The 7 Base Units describe __________, and other quantities.
- Derived units are produced by relationship between two base units or between derived units.
- Additional units of measurements can be used with SI units, such as units of _____, and _____.

Safety

• Hazards vary between the lab and the field:

Good Laboratory Practice

- _____ arises from establishing safe, common-sense habits.
- Never work _____ in the lab or without proper supervision.
- Always ask a supervisor before using any equipment.

Review Questions

- 1. List the four major parts of a compound microscope.
- 2. What is the difference between the magnification and resolution of an image under a microscope?
- 3. Compare the function of a transmission electron microscope with that of a scanning electron microscope.
- 4. What is the importance of using a common SI system of measurements?
- 5. How could you convert kilometers to millimeters?
- 6. Draw the safety symbol for 'Hand Safety'.